## SHAFT SURFACE FINISH

Surface finish greatly affects the degree of wear on the seal lip. deVries International recommends a surface finish of 10 to 20 Ra measured along the axis of the shaft. We also recommend that this finish be created by plunge grinding the surface. This will prevent a machine lead on the shaft which would accelerate lip wear and possibly pump fluid under the seal lip.

| SURFACE FINISH CONVERSION: MICRO-INCH TO MICRO-METER |             |            |             |            |             |  |  |
|------------------------------------------------------|-------------|------------|-------------|------------|-------------|--|--|
| MICRO-INCH                                           | MICRO-METER | MICRO-INCH | MICRO-METER | MICRO-INCH | MICRO-METER |  |  |
| 4                                                    | 0.1         | 32         | 0.8         | 100        | 2.5         |  |  |
| 8                                                    | 0.2         | 40         | 1.0         | 125        | 3.2         |  |  |
| 10                                                   | 0.25        | 50         | 1.25        | 160        | 4.0         |  |  |
| 16                                                   | 0.4         | 63         | 1.6         | 200        | 5.0         |  |  |
| 20                                                   | 0.5         | 80         | 2.0         | 250        | 6.3         |  |  |

# **BORE**

The same four factors which concern the shaft apply to the bore as well: surface finish, hardness, chamfer, and tolerance.

## **BORE FINISH**

A bore surface that is too rough may cause leakage between the bore and the seal. Here are the maximum bore finishes recommended for metal and rubber-covered outside diameter seals:

| BORE SURFACE FINISH RECOMME | NDATION   |
|-----------------------------|-----------|
| Metal OD                    | 20–80 Ra  |
| Rubber-Covered OD           | 63–150 Ra |

#### **BORE HARDNESS**

There is no minimum Rockwell hardness recommended for the bore. However, steel and cast iron provide good bore surfaces for both rubber-covered and metal OD seals. When the bore is of softer metals or plastic, deVries International recommends using a rubber-covered rather than a metal OD seal.

#### **BORE CHAMFER**

As with the shaft, a lead-in angle helps prevent damage during installation. The diagram below shows recommended bore chamfer.







# **BORE TOLERANCE**

The following table lists recommended tolerances and fits between bore and seal. To measure a seal's outside diameter (OD), take a minimum of three measurements equally spaced from one another on the OD and calculate the average. This will give you an accurate measurement. Out-of-round is the maximum allowable variation between the readings used to determine a seal's outside diameter.

| INCH BORE TO SEAL INTERFACE DESIGN DATA |           |                         |                        |                             |                         |                        |                             |  |
|-----------------------------------------|-----------|-------------------------|------------------------|-----------------------------|-------------------------|------------------------|-----------------------------|--|
| BORE DATA                               |           | METAL O.D. SEALS        |                        |                             | RUBBER O.D. SEALS       |                        |                             |  |
| BORE<br>DIAMETER                        | TOLERANCE | NOMINAL<br>PRESS<br>FIT | SEAL O.D.<br>TOLERANCE | SEAL MAX<br>OUT OF<br>ROUND | NOMINAL<br>PRESS<br>FIT | SEAL O.D.<br>TOLERANCE | SEAL MAX<br>OUT OF<br>ROUND |  |
| up to 2.000                             | ± .001    | .005                    | ± .002                 | .007                        | .008                    | ± .003                 | .010                        |  |
| 2.001 to 3.000                          | ± .001    | .006                    | ±.003                  | .010                        | .010                    | ± .003                 | .014                        |  |
| 3.001 to 5.000                          | ± .0015   | .006                    | ±.003                  | .012                        | .010                    | ± .003                 | .020                        |  |
| 5.001 to 7.000                          | ± .0015   | .007                    | ±.003                  | .016                        | .012                    | ± .004                 | .026                        |  |
| 7.001 to 12.000                         | ± .002    | .009                    | ±.004                  | .025                        | .012                    | ± .004                 | .031                        |  |

| METRIC BORE TO SEAL INTERFACE DESIGN DATA |           |                         |                        |                             |                         |                        |                             |  |
|-------------------------------------------|-----------|-------------------------|------------------------|-----------------------------|-------------------------|------------------------|-----------------------------|--|
| BORE DATA                                 |           | METAL O.D. SEALS        |                        |                             | RUBBER O.D. SEALS       |                        |                             |  |
| BORE<br>DIAMETER                          | TOLERANCE | NOMINAL<br>PRESS<br>FIT | SEAL O.D.<br>TOLERANCE | SEAL MAX<br>OUT OF<br>ROUND | NOMINAL<br>PRESS<br>FIT | SEAL O.D.<br>TOLERANCE | SEAL MAX<br>OUT OF<br>ROUND |  |
| 0 to 50                                   | ± 0.025   | 0.13                    | ± 0.05                 | 0.18                        | 0.20                    | ± 0.08                 | 0.26                        |  |
| 51 to 76                                  | ± 0.025   | 0.15                    | ± 0.07                 | 0.26                        | 0.25                    | ± 0.08                 | 0.36                        |  |
| 77 to 127                                 | ± 0.04    | 0.15                    | ± 0.07                 | 0.31                        | 0.25                    | ± 0.08                 | 0.51                        |  |
| 128 to 178                                | ± 0.04    | 0.17                    | ± 0.07                 | 0.41                        | 0.30                    | ± 0.10                 | 0.66                        |  |
| 179 to 305                                | ± 0.05    | 0.20                    | ± 0.09                 | 0.65                        | 0.30                    | ± 0.10                 | 0.79                        |  |



